skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hall, Chris"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Convolution and matched filtering are often used to detect a known signal in the presence of noise. The probability of detection and probability of missed detection are well known and widely used statistics. Oftentimes we are not only interested in the probability of detecting a signal but also accurately estimating when the signal occurred and the error statistics associated with that time measurement. Accurately representing the timing error is important for geolocation schemes, such as Time of Arrival (TOA) and Time Difference of Arrival (TDOA), as well as other applications. The Cramér Rao Lower Bound (CRLB) and other, tighter, bounds have been calculated for the error variance on Time of Arrival estimators. However, achieving these bounds requires an amount of interpolation be performed on the signal of interest that may be greater than computational constraints allow. Furthermore, at low Signal to Noise Ratios (SNRs), the probability distribution for the error is non-Gaussian and depends on the shape of the signal of interest. In this paper we introduce a method of characterizing the localization accuracy of the matched filtering operation when used to detect a discrete signal in Additive White Gaussian Noise (AWGN) without additional interpolation. The actual localization accuracy depends on the shape of the signal that is being detected. We develop a statistical method for analyzing the localization error probability mass function for arbitrary signal shapes at any SNR. Finally, we use our proposed analysis method to calculate the error probability mass functions for a few signals commonly used in detection scenarios. These illustrative results serve as examples of the kinds of statistical results that can be generated using our proposed method. The illustrative results demonstrate our method’s unique ability to calculate the non-Gaussian, and signal shape dependent, error distribution at low Signal to Noise Ratios. The error variance calculated using the proposed method is shown to closely track simulation results, deviating from the Cramér Rao Lower Bound at low Signal to Noise Ratios. 
    more » « less
  2. null (Ed.)
    Adolescence is a developmental period that is associated with physical, cognitive, and affective maturation and a time when sex biases in multiple psychiatric diseases emerge. While puberty onset marks the initiation of adolescence, it is unclear whether the pubertal rise in gonadal hormones generates sex differences in approach-avoidance behaviors that may impact psychiatric vulnerability. To examine the influence of pubertal development on adult behavior, we removed the gonads or performed sham surgery in male and female mice just prior to puberty onset and assessed performance in an odor-guided foraging task and anxiety-related behaviors in adulthood. We observed no significant sex differences in foraging or anxiety-related behaviors between intact adult male and female mice but found significant differences between adult male and female mice that had been gonadectomized (GDX) prior to puberty onset. GDX males failed to acquire the odor-guided foraging task, showed reduced locomotion, and exhibited increased anxiety-like behavior, while GDX females showed the opposite pattern of behavior. These data suggest that puberty may minimize rather than drive differences in approach-avoidance phenotypes in male and female mice. 
    more » « less
  3. null (Ed.)
  4. Abstract. Ground-based remote sensing of atmospheric parameters is often limited to single station observations by vertical profiles at a certain geographic location. This is a limiting factor for investigating gravity wave dynamics as the spatial information is often missing, e.g., horizontal wavelength, propagation direction or intrinsic frequency. In this study, we present a new retrieval algorithm for multistatic meteor radar networks to obtain tomographic 3-D wind fields within a pre-defined domain area. The algorithm is part of the Agile Software for Gravity wAve Regional Dynamics (ASGARD) and called 3D-Var, and based on the optimal estimation technique and Bayesian statistics. The performance of the 3D-Var retrieval is demonstrated using two meteor radar networks: the Nordic Meteor Radar Cluster and the Chilean Observation Network De Meteor Radars (CONDOR). The optimal estimation implementation provide statistically sound solutions and diagnostics from the averaging kernels and measurement response. We present initial scientific results such as body forces of breaking gravity waves leading to two counter-rotating vortices and horizontal wavelength spectra indicating a transition between the rotational k−3 and divergent k-5/3 mode at scales of 80–120 km. In addition, we performed a keogram analysis over extended periods to reflect the latitudinal and temporal impact of a minor sudden stratospheric warming in December 2019. Finally, we demonstrate the applicability of the 3D-Var algorithm to perform large-scale retrievals to derive meteorological wind maps covering a latitude region from Svalbard, north of the European Arctic mainland, to central Norway. 
    more » « less